

$\frac{d\sigma(e^{-}Z \rightarrow e^{-}Z (A' \rightarrow e^{+}e^{-}))}{d\sigma(e^{-}Z \rightarrow e^{-}Z (\gamma^{*} \rightarrow e^{+}e^{-}))} = \left(\frac{3\pi\epsilon^{2}}{2 N_{eff} \alpha}\right) \left(\frac{m_{A'}}{\delta m_{A'}}\right)$

- We want to search for the A' decay over a large background of mostly Bethe-Heitler and radiative events
- We will take two approaches: a brute force "bump-hunt" and a lower background displaced-vertex/bump-hunt search
 - covers different part of the α'/α parameter space
- As already mentioned, need very good mass and vertexing performance out of the HPS detector
- By "very good" we mean ~1-2% Δm/m and rejection of prompt vertices of ~10⁻⁶ level around ~1cm from target
- We use a detailed tracker simulation ("lcsim") to optimize the detector layout and estimate our performance

org.lcsim simulation

We use the org.lcsim package for tracker optimization studies
designed for linear collider studies, java-based package allows for quick-and-easy testing of many different detector layouts
Uses GEANT4 to simulate interactions with active and dead material

•Full digitization algorithm:

energy deposited in slices, drifted to surface accounting for diffusion and Lorentz angle
appropriate readout of strips is accounted for

org.lcsim reconstruction

- •org.lcsim also contains track-finding and track-fitting algorithms
 - •uses same geometry for simulation/reconstruction
- •Track-finding uses a "seed-confirm-extend" approach
 - •helix fit is performed for each additional hit added
 - •multiple scattering accounted for
 - •require tracks to have minimum number of hits, pass goodness-
 - of-fit (χ^2), some basic direction cuts
- •For what I'll show, we've used an "inside-out" strategy requiring hits at least in the first 5 layers (6th optional)
 - •done some preliminary studies dropping the layer I requirement...will not show

Layout and Setup $black \rightarrow Bend$ vertexing pattern recognition blue→SAS-Bend 90° 90° 90° B=IT out of plane SAS SAS SAS red→Non-bend 0.25% W Х e 10 cm ≻Z Stereo angle=50mrad Ì0 cm 20 cm 10 cm bend-plane layer pitch=60 µ **4** cm with intermediate strips every 30 μ Silicon is 320µ thick, ±15mrad "services"=0.2%/Plane; detector is in Χ vacuum ≻y

Tracking Performance Studies

- For most studies shown here, we've included radiative events at a certain mass atop "beam background"
 - simulate the beam by passing 7.5ns×400nA electrons/event though the target
 - radiative bkg simulated by taking A' events decaying promptly at the target
- For vertexing, need to investigate tails down to 10⁻⁶ after acceptance+efficiency!
 - generated one mass point (200MeV) with >100M events
 - a couple of others with ~30M events
 - others, small samples just to check acceptances

Occupancies etc...

occupancy in line with expectations (considering ~1.8 strips/particle)
single hit resolution ~5.2µ

Tracking Efficiency

Separate "tracking efficiency" from acceptance by requiring particle to pass through at least first 5 layers
efficiency is ~80-90% and roughly independent of mass and beam energy
mostly constant with momentum and angles

Mis-matched hits on tracks

Track Momentum Resolution

(this plot was made without layer 2)

HPS Tracking and Reach

BOSON 2010

Track Spatial Resolution

•we quantify the spacial resolution by looking at the POCA to the beam axis...the distance in the non-bend plane is YOCA; bend plane is XOCA

Vertexing

All oppositely charged tracks combined to form an A' candidate
Use the measured track parameters to create a vertex where the A' candidate is constrained to point back to the beamspot

Vertexing

All oppositely charged tracks combined to form an A' candidate
Use the measured track parameters to create a vertex where the A' candidate is constrained to point back to the beamspot

Vertex Position Resolution

We are able to obtain $>10^{-6}$ rejection @ 1cm

Prompt Vertex Rejection

This scaling also appears to work for the tails as well...!

Beamspot: we need it small!

Mass Resolution

expect resolution σ~m/E to scale with opening angle

...haven't implemented beamspot constrained mass calculation yet...should improve the resolution!

Tracking Performance Summary

- Based on our simulation studies, we are able to achieve vertexing and mass resolutions that will allow us to explore a large parameter space (see next)
- There are a few caveats...simulation doesn't include:
 - misalignment
 - noisy/dead strips
 - imperfect knowledge of B-field etc....
- ...on the other hand, there are more tricks to play to improve the tracking and vertexing
 - full position+timing track fit
 - cluster shape/isolation requirements
 - Kalman filter to obtain track parameters
 - full use of A' kinematic info etc, etc...
- We are confident that our current estimated performance is conservative and will get better.

Physics Reach Calculation: Bump Hunt

•calculate the signal significance as a function of mass and coupling

$$\left(\frac{S}{\sqrt{B}}\right)_{bin} = \left(\frac{N_{radiative}}{N_{total}}\right) \sqrt{N_{bin}} \left(\frac{3\pi\epsilon^2}{2 N_{eff} \alpha}\right) \left(\frac{m_{A'}}{\delta m_{A'}}\right) \epsilon_{bin}$$

 N_{total} includes radiative and BH events
 N_{bin} includes geometric acceptance and trigger/tracking efficiencies

Bump-hunt α'/α Reach

Physics Reach Calculation: Vertexing

$$\epsilon_{sigeff}(zcut) \cong \epsilon_{vtx} \times \left(e^{-\left(\frac{zcut}{\gamma c \tau}\right)} - e^{-\left(\frac{zmax}{\gamma c \tau}\right)}\right)$$

$$\left(\frac{s}{\sqrt{B}}\right)_{bin,zcut} = \left(\frac{s}{\sqrt{B}}\right)_{bin} \frac{\epsilon_{sigeff}(zcut)}{\sqrt{\epsilon_{rejection}(zcut)}} > 2$$
and require >2.4 expected signal events and ~0.5 background events
$$10^{0} \frac{0}{\sqrt{200 \text{ MeV}}} \frac{125 \text{ MeV}}{\sqrt{c\tau=35 \text{ mm}}} \frac{125 \text{ MeV}}{\sqrt{c\tau=35 \text{ mm}}}$$
HPS Tracking and Reach

optimize the minimum value of z_{cut}
z_{max} set to 20cm...
preliminary studies show we can track efficiently out to there...probably can go further
use scaled prompt rejection factors (like on slide 14)

HPS α'/α Expected Reach

22

α'/α Reach: 0 Mishits...

HPS Tracking and Reach

BOSON 2010

Conclusions

• We've optimized the tracker layout to give good efficiency and excellent track quality

- With our current estimated performance, we will cover a significant and unique range of parameter space
 - also, it's a significantly interesting region
- Lots of work to do in the next few months to optimize the tracking and vertexing algorithms, but we are sure we can improve on the current performance

Vertex Resolution Mass Dependence

Error on vertex position dominated by MS errors on the opening angle determination...

naively expect the vertex resolution to scale like:

$$\frac{\sigma(\theta)}{\theta} \sim \frac{(1/E)}{(m/E)} \sim \frac{1}{m}$$

...for the (Gaussian) core of the resolution, this scaling seems to work

